Léonard Tschora

Pr. Siegfried Niissen

Pr. Massih-Reza Amini

Dr. Charlotte Laclau Pr Flisa Fromont

Introduction

Pr. Stéphane Canu

Dr. Erwan Pierre

Pr Céline Robardet Pr. Marc Plantevit

Université Catholique de Louvain

17th Jan, 2024

Université Grenoble Alpes Télécom Paris

Université Rennes 1

INSA Rouen

elmy INSA Lvon

EPITA

Introduction occooo Explaining the Forecasts occooo Occoo

Léonard Tschora

Consumption

Consumption

Generation

How can suppliers and consumers agree on a common price?

Explaining the Forecasts

Consumption

Generation

How can suppliers and consumers agree on a common price?

They use a Price-Fixing Algorithm

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Consumption Programmable Generation Renewables Generation

Introduction

Consumption

Programmable Generation Renewables Generation

Not available at forecasting time!

Introduction

Introduction

Electricity Price Forecasts usage: The Islander project

Introduction

This project has received funding from the European Union's Horizon 2020 research and innovation under grant agreement No 957669

The island of Borkum, Germany

Electricity Price Forecasts usage: The Islander project

Introduction

0000000

This project has received funding from the European Union's Horizon 2020 research and innovation under grant agreement No 957669

The island of Borkum, Germany

Introduction ○○○●○○○

Electricity Price Forecasts usage : The Islander project

This project has received funding from the European Union's Horizon 2020 research and innovation under grant agreement No 957669

The island of Borkum, Germany

Introduction

Explaining the Forecasts

Introduction

Explaining the Forecasts

Domain Expert

Introduction

Introduction

Necessity to explain the forecasts!

A differentiable Optimization Approach

Introduction

Introduction

How can we forecast the prices of all markets simultaneously?

How can we forecast the prices of all markets simultaneously?

Introduction

How can we forecast the prices of all markets simultaneously?

Introduction

How can we forecast the prices of all markets simultaneously?

Introduction

How can we forecast the prices of all markets simultaneously?

Introduction

 $egin{array}{c} \widehat{Y}_{FR} \ \widehat{Y}_{ES} \ \cdots \ \widehat{Y}_{GR} \end{array}$

How can we forecast the prices of all markets simultaneously?

FR

How can we consider the constrained energy flows while forecasting prices?

Introduction

The Price-Fixing Algorithm

Introduction

The Price-Fixing Algorithm

Introduction

The Price-Fixing Algorithm

Introduction

Explaining the Forecasts

Introduction

The Price-Fixing Algorithm

Explaining the Forecasts

Introduction

The Price-Fixing Algorithm

Explaining the Forecasts

How can we minimize the Price Forecasting Error?

- - Introduction
 - **2** Explaining the Forecasts
 - Optimize-then-Predict approach
 - 4 A differentiable Optimization Approach

J. Lago et. al Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark, Applied Energy, 2021

 $V^{(d-7,h)}$ if

V(d-1,h)otherwise

d is a week-end

Models:

Deep Neural Network

J. Lago et. al Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark, Applied Energy, 2021

 $V^{(d-7,h)}$ if

V(d-1,h)otherwise

d is a week-end

Models:

Introduction

- Deep Neural Network
- Convolutional Neural Network
- Random Forest
- Support Vector (Chain, Multi)

J. Lago et. al Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark, Applied Energy, 2021

 $V^{(d-7,h)}$ if

V(d-1,h)otherwise

d is a week-end

Models:

Introduction

- Deep Neural Network
- Convolutional Neural Network
- Random Forest
- Support Vector (Chain, Multi)

J. Lago *et. al* Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark, Applied Energy, 2021

Models:

Introduction

- Deep Neural Network
- Convolutional Neural Network
- Random Forest
- Support Vector (Chain, Multi)

J. Lago et. al Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark, Applied Energy, 2021

 $\widehat{Y}_{naive}^{(d,h)} =$

Models:

Introduction

- Deep Neural Network
- Convolutional Neural Network
- Random Forest
- Support Vector (Chain, Multi)

Features

Multi-market forecasting model M

$$m{X}_{FR,DE,BE}^{(d)}
ightarrow m{M}
ightarrow [m{Y}_{FR}^{(d)},m{Y}_{DE}^{(d)},m{Y}_{BE}^{(d)}]$$

How well do the model perform?

Recalibration = the model is retrained before each prediction

$$RMAE(Y, \widehat{Y}) = \frac{MAE(Y, \widehat{Y})}{MAE(Y, \widehat{Y}_{naive})} \in [0, 1]$$
 $\widehat{Y}_{naive}^{(d,h)} = \begin{cases} Y^{(d-1,h)} & \text{if } d \text{ is a week day} \\ Y^{(d-7,h)} & \text{otherwise} \end{cases}$

$$\widehat{Y}_{naive}^{(d,h)} = \begin{cases} Y^{(d-1,h)} & \text{if } d \text{ is a week day} \\ Y^{(d-7,h)} & \text{otherwise} \end{cases}$$

How well do the model perform?

Recalibration = the model is retrained before each prediction

$$RMAE(Y, \widehat{Y}) = \frac{MAE(Y, \widehat{Y})}{MAE(Y, \widehat{Y}_{naive})} \in [0, 1]$$
 $\widehat{Y}_{naive}^{(d,h)} = \begin{cases} Y^{(d-1,h)} & \text{if } d \text{ is a week day} \\ Y^{(d-7,h)} & \text{otherwise} \end{cases}$

Markets Datasets		CNN	RF	S۷	SOTA	
iviarkets	Datasets	CIVIN	KF	Chain	Multi	DNN
	SOTA	0.64	0.71	0.60	0.61	0.62
FR	Enriched	0.69	0.61	0.54	0.55	0.58
FK	Multi-Market	0.59	0.64	0.55	0.55	0.57
	[2020-2021]	0.73	0.66	0.48	0.46	0.56
DE	SOTA	0.50	0.57	0.45	0.45	0.45
	Enriched	0.44	0.51	0.43	0.45	0.43
DE	Multi-Market	0.45	0.57	0.45	0.45	0.45
	[2020-2021]	0.47	0.58	0.46	0.48	0.42
BE	SOTA	0.73	0.74	0.73	0.71	0.71
	Enriched	0.70	0.74	0.69	0.70	0.72
BE	Multi-Market	0.68	0.75	0.67	0.67	0.67
	[2020-2021]	0.88	0.76	0.58	0.59	0.73

Recalibration = the model is retrained before each prediction

$$RMAE(Y, \widehat{Y}) = \frac{MAE(Y, \widehat{Y})}{MAE(Y, \widehat{Y}_{naive})} \in [0, 1] \qquad \widehat{Y}_{naive}^{(d,h)} = \begin{cases} Y^{(d-1,h)} & \text{if } d \text{ is a week day} \\ Y^{(d-7,h)} & \text{otherwise} \end{cases}$$

Markets	Datasets	CNN	CNN RF SVR		SOTA		
iviarkets	Datasets	CIVIV	KF	Chain	Multi	DNN	
	SOTA	0.64	0.71	0.60	0.61	0.62	١,
FR	Enriched	0.69	0.61	0.54	0.55	0.58	→ Improvement
FK	Multi-Market	0.59	0.64	0.55	0.55	0.57	
	[2020-2021]	0.73	0.66	0.48	0.46	0.56	
	SOTA	0.50	0.57	0.45	0.45	0.45	<u> </u>
DE	Enriched	0.44	0.51	0.43	0.45	0.43	
DE	Multi-Market	0.45	0.57	0.45	0.45	0.45	
	[2020-2021]	0.47	0.58	0.46	0.48	0.42	
	SOTA	0.73	0.74	0.73	0.71	0.71	\ \
BE	Enriched	0.70	0.74	0.69	0.70	0.72	→ Improvement
BE	Multi-Market	0.68	0.75	0.67	0.67	0.67	
	[2020-2021]	0.88	0.76	0.58	0.59	0.73	

How well do the model perform?

Recalibration = the model is retrained before each prediction

$$RMAE(Y, \widehat{Y}) = \frac{MAE(Y, \widehat{Y})}{MAE(Y, \widehat{Y}_{naive})} \in [0, 1] \qquad \widehat{Y}_{naive}^{(d,h)} = \begin{cases} Y^{(d-1,h)} & \text{if } d \text{ is a week day} \\ Y^{(d-7,h)} & \text{otherwise} \end{cases}$$

Markets	Datasets	CNN	RF	S۱	SOTA	L	
iviarkets	Datasets	CIVIN	KF	Chain	Multi	DNN	
	SOTA	0.64	0.71	0.60	0.61	0.62]
FR	Enriched	0.69	0.61	0.54	0.55	0.58	ŀ
FK	Multi-Market	0.59	0.64	0.55	0.55	0.57	R
	[2020-2021]	0.73	0.66	0.48	0.46	0.56	
DE	SOTA	0.50	0.57	0.45	0.45	0.45	1
	Enriched	0.44	0.51	0.43	0.45	0.43	ŀ
	Multi-Market	0.45	0.57	0.45	0.45	0.45	K
	[2020-2021]	0.47	0.58	0.46	0.48	0.42	
BE	SOTA	0.73	0.74	0.73	0.71	0.71	1
	Enriched	0.70	0.74	0.69	0.70	0.72	ŀ
DE	Multi-Market	0.68	0.75	0.67	0.67	0.67	ľ
	[2020-2021]	0.88	0.76	0.58	0.59	0.73	

Partial improvement

No improvement

Improvement

How well do the model perform?

Recalibration = the model is retrained before each prediction

$$RMAE(Y,\widehat{Y}) = \frac{MAE(Y,\widehat{Y})}{MAE(Y,\widehat{Y}_{naive})} \in [0,1] \qquad \widehat{Y}_{naive}^{(d,h)} = \begin{cases} Y^{(d-1,h)} & \text{if } d \text{ is a week day} \\ Y^{(d-7,h)} & \text{otherwise} \end{cases}$$

Markets	Datasets	CNN	RF	SVR		SOTA	
iviarkets	Datasets	CIVIN	KF	Chain	Multi	DNN	
	SOTA	0.64	0.71	0.60	0.61	0.62	
FR	Enriched	0.69	0.61	0.54	0.55	0.58	
FK	Multi-Market	0.59	0.64	0.55	0.55	0.57	5
	[2020-2021]	0.73	0.66	0.48	0.46	0.56	ln لح
	SOTA	0.50	0.57	0.45	0.45	0.45]
DE	Enriched	0.44	0.51	0.43	0.45	0.43	
DE	Multi-Market	0.45	0.57	0.45	0.45	0.45	7 0
	[2020-2021]	0.47	0.58	0.46	0.48	0.42	ŀ√P
BE	SOTA	0.73	0.74	0.73	0.71	0.71]
	Enriched	0.70	0.74	0.69	0.70	0.72	
DE	Multi-Market	0.68	0.75	0.67	0.67	0.67	ار دا
	[2020-2021]	0.88	0.76	0.58	0.59	0.73	J√ In

Improvement

Partial Improvement

Improvement

$$\widehat{Y}^{(d,h)} = \sum_{f,l,h'} \Phi^{(d,h)}_{f,l,h'}$$

$$\widehat{Y}^{(d,h)} = \sum_{f,l,h'} \Phi_{f,l,h'}^{(d,h)}$$

$$\bar{\Phi}_{f,l,h'}^{(h)} = \frac{1}{n_d} \sum_{d} \Phi_{f,l,h'}^{(d,h)}$$

$$\widehat{Y}^{(d,h)} = \sum_{f,l,h'} \Phi_{f,l,h'}^{(d,h)}$$

$$\bar{\Phi}_{f,l,h'}^{(h)} = \frac{1}{n_d} \sum_{d} \Phi_{f,l,h'}^{(d,h)}$$

$$\widehat{Y}^{(d,h)} = \sum_{f,l,h'} \Phi_{f,l,h'}^{(d,h)}$$

Introduction

$$\bar{\Phi}_{f,l,h'}^{(h)} = \frac{1}{n_d} \sum_{d} \Phi_{f,l,h'}^{(d,h)}$$

Vertical lines for end-of-the-day Past Prices

Explaining the DDN's German price forecasts using Shap Values

S. Lundberg et al. A Unified Approach to Interpreting Model Predictions., NIPS 2017

$$\widehat{Y}^{(d,h)} = \sum_{f,l,h'} \Phi_{f,l,h'}^{(d,h)}$$

$$\bar{\Phi}_{f,l,h'}^{(h)} = \frac{1}{n_d} \sum_{d} \Phi_{f,l,h'}^{(d,h)}$$

- Vertical lines for end-of-the-day Past Prices
- Past Features are not important

Explaining the DDN's German price forecasts using Shap Values

S. Lundberg et al. A Unified Approach to Interpreting Model Predictions., NIPS 2017

$$\widehat{Y}^{(d,h)} = \sum_{f,l,h'} \Phi_{f,l,h'}^{(d,h)}$$

$$\bar{\Phi}_{f,l,h'}^{(h)} = \frac{1}{n_d} \sum_{d} \Phi_{f,l,h'}^{(d,h)}$$

- Vertical lines for end-of-the-day Past Prices
- Past Features are not important
- Diagonals: $\bar{\Phi}_{f,l,h'}^{(h)}$ is high when h=h' Importance of Generation Forecasts and Foreign Prices (Switzerland, the Netherlands)

Using a SVR or a DNN combined with Shap Values bridges the gap between forecasts explainability and model performance

Introduction

Using a SVR or a DNN combined with Shap Values bridges the gap between forecasts explainability and model performance

Electricity price forecasting on the day-ahead market using machine learning Applied Energy 313 (2022)

Synthesis

Introduction

Using a SVR or a DNN combined with Shap Values bridges the gap between forecasts explainability and model performance

Electricity price forecasting on the day-ahead market using machine learning Applied Energy 313 (2022)

Shap Values link predictions with Domain-Knowledge

- Introduction
- 3 Optimize-then-Predict approach
- 4 A differentiable Optimization Approach

Estimating the flows using an Optimization problem

Attributes				
$\mathbf{Y}^{(d-1)}$	Past prices			
С	Consumption Forecast			
G	Programmable Generation Forecast			
R	Renewables Generation Forecast			

$$Fs = \arg\max_{F_{z,z'}} \sum_{z,z'} F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)})$$

Forecast under const.
$$\begin{cases} F_{z,z'} & F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)}) \\ F_{z,z'} & F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)}) \\ F_{z,z'} & F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)}) \end{cases}$$

00000000

Attributes				
$\mathbf{Y}^{(d-1)}$	Past prices			
С	Consumption Forecast			
G	Programmable Generation Forecast			
R	Renewables Generation Forecast			

$$Fs = \underset{F_{z,z'}}{\operatorname{arg\,max}} \ \sum_{z,z'} F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)}) \ \ \underset{\text{using forecasts G, R, C}}{\operatorname{Impossible to enforce}}$$

Forecast orecast under const.
$$\begin{cases} G_z + R_z - C_z + \sum_{z'} F_{z',z} - \sum_{z'} F_{z,z'} = 0 \\ F_{z,z'} \le \Gamma_{z,z'} \end{cases} \forall z$$

Estimating the flows using an Optimization problem

Attributes		
$\mathbf{Y}^{(d-1)}$	Past prices	
С	Consumption Forecast	
G	Programmable Generation Forecast	
R	Renewables Generation Forecast	

$$Fs = \underset{F_{z,z'}}{\mathsf{arg\,max}} \ \sum_{z,z'} F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)})$$

Fs = arg max
$$\sum_{z,z'} F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)})$$
 Impossible to enforce using forecasts G , R , C in Forecast under const.
$$G_z + R_z - C_z + \sum_{z'} F_{z',z} - \sum_{z'} F_{z,z'} = 0$$
 $\forall z$ $\forall z, z'$

Using Programmable Generation E as an optimization variable

Flin

$$\underset{F_{z,z'}, E_z}{\text{arg max}} \ \sum_{z,z'} F_{z,z'} (P_{z'} - P_z)$$

$$\begin{cases} E_z + R_z - C_z + \sum_{z'} F_{z,z'} - \sum_{z'} F_{z',z} = 0 \\ 0 \le F_{z,z'} \le A_{z,z'} & \forall z, z' \\ 0 \le E_z \le V_z & \forall z \end{cases}$$

Attributes			
$Y^{(d-1)}$	Past prices		
С	Consumption Forecast		
G	Programmable Generation Forecast		
R	Renewables Generation Forecast		

$$Fs = \underset{F_{z,z'}}{\text{arg max}} \sum_{z,z'} F_{z,z'} (Y_{z'}^{(d-1)} - Y_{z}^{(d-1)}) \quad \begin{array}{c} \text{Impossible to enforce} \\ \text{using forecasts G, R, C} \end{array}$$

orecast order const.
$$\begin{cases} G_z + R_z - C_z + \sum_{z'} F_{z',z} - \sum_{z'} F_{z,z'} = 0 \\ F_{z,z'} \le \Gamma_{z,z'} \end{cases} \forall z$$

Using Programmable Generation E as an optimization variable

Flin

$$\underset{F_{z,z'}, E_z}{\text{arg max}} \ \sum_{z,z'} F_{z,z'} (P_{z'} - P_z)$$

$$\begin{bmatrix}
E_z + R_z - C_z + \sum_{z'} F_{z,z'} - \sum_{z'} F_{z',z} = 0 \\
0 \le F_{z,z'} \le A_{z,z'} & \forall z, z' \\
0 \le E_z \le V_z & \forall z
\end{bmatrix}$$

Penalize deviation from the Energy Balance

Flsa

$$\begin{cases} \operatorname{arg\,max}_{F_{z,z'},\ E_z} \sum_{z,z'} F_{z,z'}(P_{z'} - P_z) \\ F_{z,z'},\ E_z \sum_{z,z'} F_{z,z'} - \sum_{z'} F_{z',z} = 0 \\ 0 \leq F_{z,z'} \leq A_{z,z'} \\ 0 \leq E_z \leq V_z \end{cases} \forall z \quad \forall z \quad \text{arg\,min}_{F_{z,z'}} \sum_{z} \left(R_z + G_z - C_z + \sum_{z'} F_{z',z} - \sum_{z'} F_{z,z'} \right)^2 \\ u.c. \quad 0 \leq F_{z,z'} \leq A_{z,z'} \forall_{z,z'} \end{cases}$$

Combining the Flow estimates

Combining the Flow estimates

$$L^{(t)}(z,z') = |\mathbf{F}_{z,z'}^{(t)} - \mathbf{Flsq}_{z,z'}^{(t)}| - |\mathbf{F}_{z,z'}^{(t)} - \mathbf{Flin}_{z,z'}^{(t)}|$$

Combining the Flow estimates

$$L^{(t)}(z,z') = |\mathsf{F}_{z,z'}^{(t)} - \mathsf{Flsq}_{z,z'}^{(t)}| - |\mathsf{F}_{z,z'}^{(t)} - \mathsf{Flin}_{z,z'}^{(t)}|$$

$$\mathbf{Fcmb} = \begin{cases} \mathbf{Flin} & \text{if } L^{(t)}(z, z') > 0 \\ \mathbf{Flsq} & \text{otherwise} \end{cases}$$

Enforcing One-sided flows

A differentiable Optimization Approach

If a connection is 75 % one sided in the dataset, we always apply

One-Sideness to its flows

Enforcing One-sided flows

Introduction

One-sided Flows

If a connection is 75 % one sided in the dataset, we always apply

One-Sideness to its flows

An Optimize-then Predict approach

Ê	SMAPE	
Γ		
Flin		-
Flsq		DNN
Fcmb		D
Fos		
Γ		
Flin		-
Flsq		CNN
Fcmb		C
Fos		
Γ		
Flin		-
Flsq		BNN
Fcmb		G
Fos		

Ê	SMAPE	
Γ	29.76	
Flin	28.51	-
Flsq	28.26	DNN
Fcmb	28.38	D
Fos	28.84	
Γ	32.17	_
Flin	32.23	-
Flsq	32.01	CNN
Fcmb	31.81	\mathbb{C}
Fos	31.87	
Γ	24.59	
Flin	24.6	-
Flsq	24.6	GNN
Fcmb	24.46	G
Fos	24.52	

Ê	SMAPE	
Γ	29.76	
Flin	28.51	-
Flsq	28.26	DNN
Fcmb	28.38	D
Fos	28.84	
Γ	32.17	_
Flin	32.23	_
Flsq	32.01	SNN
Fcmb	31.81	C
Fos	31.87	
Γ	24.59	
Flin	24.6	-
Flsq	24.6	SNN
Fcmb	24.46	G
Fos	24.52	

DM test results between models using Γ and models using different $\widehat{\mathbf{F}}$

DM test results between models using Γ and models using different $\widehat{\mathbf{F}}$

DM test results between models using Γ and models using different $\widehat{\mathbf{F}}$

DM test results between models using Γ and models using different $\widehat{\mathbf{F}}$

DM test results between models using Γ and models using different $\widehat{\mathbf{F}}$

Multi-Market Forecasting using a Graph Network Constraints considered using Flow Estimation Problems

Multi-Market Forecasting using a Graph Network Constraints considered using Flow Estimation Problems

Forecasting Electricity Prices: An Optimize Then Predict-Based Approach, IDA 2023.

Multi-Market Forecasting using a Graph Network Constraints considered using Flow Estimation Problems

Forecasting Electricity Prices: An Optimize Then Predict-Based Approach, IDA 2023.

Multi-Market Forecasting using a Graph Network Constraints considered using Flow Estimation Problems

Forecasting Electricity Prices: An Optimize Then Predict-Based Approach, IDA 2023.

Domain-Knowledge integrated in the input

4 D L 4 D L 4 E L 4 E L 50 C

Introduction

Multi-Market Forecasting using a Graph Network Constraints considered using Flow Estimation Problems

Forecasting Electricity Prices: An Optimize Then Predict-Based Approach, IDA 2023.

Domain-Knowledge integrated in the input

But this is done A priori!

- Introduction
- Optimize-then-Predict approach
- 4 A differentiable Optimization Approach

Differentiable Optimization

Amos B, Kolter JZ. Optnet: Differentiable optimization as a layer in neural networks., ICML 2017

Differentiable Optimization

Amos B, Kolter JZ. Optnet: Differentiable optimization as a layer in neural networks.. ICML 2017

|OB| = thousands of Orders per hour

Differentiable Optimization

Amos B, Kolter JZ. Optnet: Differentiable optimization as a layer in neural networks., ICML 2017

|OB| = thousands of Orders per hour

We have to define **EUPHEMIA**'s forward and backward pass

Formalizing Euphemia's forward pass on 1 market

 $\max_{A \in [0,1]^n} \text{Social Welfare}(A, OB)$

u.c. Energy Balance(A, OB) = 0

 $\max_{A \in [0,1]^n} \mathsf{Social} \ \mathsf{Welfare}(A,OB)$

$$u.c.$$
 Energy Balance $(A, OB) = 0$

Formalizing Euphemia's forward pass on 1 market

 $\max_{A \in [0,1]^n} \mathsf{Social} \ \mathsf{Welfare}(A,OB)$

u.c. Energy Balance(A, OB) = 0

Formalizing Euphemia's forward pass on 1 market

 $\max_{A \in [0,1]^n} \mathsf{Social} \ \mathsf{Welfare}(A,OB)$

u.c. Energy Balance(A, OB) = 0

Social Welfare(A, OB) $A \in [0,1]^n$

u.c. Energy Balance(A, OB) = 0

FUPHFMIA

$$\begin{aligned} \max_{A} \sum_{i \in OB} \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right) \\ \text{u.c.} \quad \sum_{i \in OB} A_i V_i = 0, \end{aligned}$$

u.c.
$$\sum_{i \in OB} A_i V_i = 0$$

$$-A_i \leq 0,$$

$$A_i - 1 \leq 0$$

Social Welfare(A, OB) $A \in [0,1]^n$

u.c. Energy Balance(A, OB) = 0

FUPHFMIA

$$\begin{aligned} \max_{A} \sum_{i \in OB} \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right) \\ \text{u.c.} \quad \sum_{i \in OB} A_i V_i = 0, \end{aligned}$$

u.c.
$$\sum_{i \in OB} A_i V_i = 0$$

$$-A_{i}\leq 0,$$

$$A_i-1\leq 0$$

How can we find Y while solving

EUPHEMIA?

EUPHEMIA

$$\max_{A} \sum_{i \in OB} \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right)$$
u.c.
$$\sum_{i \in OB} A_i V_i = 0,$$

$$-A_i \le 0,$$

 $A_i - 1 < 0$

EUPHEMIA

$$\max_{A} \sum_{i \in OB} \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right)$$
u.c.
$$\sum_{i \in OB} \mathbf{A_i V_i} = 0,$$

$$-\mathbf{A_i} < 0.$$

A: -1 < 0

Lagrangian

$$\mathcal{L}(A, \lambda, M, K) = \sum_{i \in OB} \left(-\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (A_i - 1) \right)$$

Dual Problem

Introduction

$$\lambda^\star = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_i(\lambda)$$

with
$$\mathcal{D}_{i}(\lambda) = \begin{cases} (1) \ 0, & \text{if } V_{i}(Po_{i} - \lambda) > 0 \\ (2) \ V_{i}(\lambda - \frac{P_{i}}{2} - Po_{i}), & \text{if } V_{i}(\lambda - P_{i} - Po_{i})) > 0 \\ (3) \ \frac{V_{i}}{2P_{i}}(\lambda - Po_{i})^{2}, & \text{if } \lambda \in [Po_{i}, Po_{i} + P_{i}] \end{cases}$$

EUPHEMIA

 $-\mathbf{A}_{i} \leq 0,$ $\mathbf{A}_{i} - 1 < 0$

$$\begin{split} \max_{A} \sum_{i \in OB} \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right) \\ \text{u.c.} \ \sum_{i \in OB} \textbf{A}_i \textbf{V}_i = 0, \end{split}$$

$$\mathcal{L}(A, \lambda, M, K) = \sum_{i \in OB} \left(-\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (A_i - 1) \right)$$

Writing the Dual Problem and its derivative

Dual Problem

Introduction

$$\lambda^{\star} = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_i(\lambda)$$

$$\lambda^{\star} = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_{i}(\lambda)$$

$$\text{with } \mathcal{D}_{i}(\lambda) = \begin{cases} (1) \ 0, & \text{if } V_{i}(Po_{i} - \lambda) > 0 \\ (2) \ V_{i}(\lambda - \frac{P_{i}}{2} - Po_{i}), & \text{if } V_{i}(\lambda - P_{i} - Po_{i})) > 0 \\ (3) \ \frac{V_{i}}{2P_{i}}(\lambda - Po_{i})^{2}, & \text{if } \lambda \in [Po_{i}, Po_{i} + P_{i}] \end{cases}$$

(3)
$$\frac{V_i}{2P_i}(\lambda - Po_i)^2$$
, if $\lambda \in [Po_i, Po_i + P_i]$

$$\mathcal{L}(A,\lambda,M,K) = \sum_{i \in OB} \left(-\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (A_i - 1) \right)$$

Dual Problem

Introduction

$$\lambda^\star = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_i(\lambda)$$

$$\lambda^{\wedge} = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_{i}(\lambda)$$
with $\mathcal{D}_{i}(\lambda) = \begin{cases} (1) \ 0, & \text{if } V_{i}(Po_{i} - \lambda) > 0 \\ (2) \ V_{i}(\lambda - \frac{P_{i}}{2} - Po_{i}), & \text{if } V_{i}(\lambda - P_{i} - Po_{i})) > 0 \\ (3) \ \frac{V_{i}}{2P_{i}}(\lambda - Po_{i})^{2}, & \text{if } \lambda \in [Po_{i}, Po_{i} + P_{i}] \end{cases}$

 λ^{\star} is the Day-Ahead Price!

$$\mathcal{L}(A,\lambda,M,K) = \sum_{i \in OB} \left(-\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (A_i - 1) \right)$$

Dual Problem

Introduction

$$\lambda^\star = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_i(\lambda)$$

$$\lambda^{n} = \min_{\lambda} \sum_{i \in OB} D_{i}(\lambda)$$
with $D_{i}(\lambda) = \begin{cases} (1) \ 0, & \text{if } V_{i}(Po_{i} - \lambda) > 0 \\ (2) \ V_{i}(\lambda - \frac{P_{i}}{2} - Po_{i}), & \text{if } V_{i}(\lambda - P_{i} - Po_{i})) > 0 \end{cases}$

$$\begin{cases} (3) \ \frac{V_{i}}{2P_{i}}(\lambda - Po_{i})^{2}, & \text{if } \lambda \in [Po_{i}, Po_{i} + P_{i}] \end{cases}$$

 λ^* is the Day-Ahead Price!

$$\mathcal{L}(A, \lambda, M, K) = \sum_{i \in OB} \left(-\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (A_i - 1) \right)$$

Writing the Dual Problem and its derivative

Dual Problem

Introduction

$$\lambda^\star = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_i(\lambda)$$

with
$$\mathcal{D}_{i}(\lambda) = \begin{cases} (1) \ 0, & \text{if } V_{i}(Po_{i} - \lambda) > 0 \\ (2) \ V_{i}(\lambda - \frac{P_{i}}{2} - Po_{i}), & \text{if } V_{i}(\lambda - P_{i} - Po_{i})) > 0 \\ (3) \ \frac{V_{i}}{2P_{i}}(\lambda - Po_{i})^{2}, & \text{if } \lambda \in [Po_{i}, Po_{i} + P_{i}] \end{cases}$$

 λ^{\star} is the Day-Ahead Price!

$$\mathcal{L}(A,\lambda,M,K) = \sum_{i \in OB} \left(-\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (A_i - 1) \right)$$

$$\mathcal{D}'(\lambda^{\star}) = 0$$

$$H(x) = egin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{cases}$$
 $x_i = V_i(\lambda - Po_i)$ $y_i = V_i(\lambda - Po_i - P_i)$

Dual Problem

Introduction

$$\lambda^\star = \min_{\lambda} \sum_{i \in OB} \mathcal{D}_i(\lambda)$$

with
$$\mathcal{D}_{i}(\lambda) = \begin{cases} (1) \ 0, & \text{if } V_{i}(Po_{i} - \lambda) > 0 \\ (2) \ V_{i}(\lambda - \frac{P_{i}}{2} - Po_{i}), & \text{if } V_{i}(\lambda - P_{i} - Po_{i})) > 0 \end{cases}$$

 λ^{\star} is the Day-Ahead Price!

$$\mathcal{L}(A, \lambda, M, K) = \sum_{i \in OB} \left(-\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (A_i - 1) \right)$$

Algorithm 1 Differentiable dichotomic search.

```
 lb \leftarrow -500€/MWh 
 ub \leftarrow 3000€/MWh 
 found ← False 
 while (found = False) and (ub - lb > 2 * 0.01) do 
 λ ← \frac{ub+lb}{2} 
 \mathcal{D}'_k \leftarrow \mathcal{D}'(λ) 
 found ← \mathcal{D}'_k = 0 
 ub \leftarrow ub - H(\mathcal{D}'_k) * (ub - λ) 
 lb \leftarrow λ - H(\mathcal{D}'_k) * (λ - lb) 
 end while
```

Solving $\overline{\mathcal{D}'(\lambda^\star)}=0$ using a Differentiable Dichotomic search

Algorithm 1 Differentiable dichotomic search.

lb ← -500€/MWh
ub ← 3000€/MWh
found ← False
while (found = False) and
$$(ub - lb > 2 * 0.01)$$
 do

$$\lambda \leftarrow \frac{ub+lb}{2}$$

$$\mathcal{D}'_k \leftarrow \mathcal{D}'(\lambda)$$
found ← $\mathcal{D}'_k = 0$

$$ub \leftarrow ub - H(\mathcal{D}'_k) * (ub - \lambda)$$

$$lb \leftarrow \lambda - H(\mathcal{D}'_k) * (\lambda - lb)$$
end while

$$\frac{\partial \widehat{Y}}{\partial \widehat{OB}} = \sum_{m} \nabla_{m} \frac{\partial m}{\partial \widehat{OB}} \, \forall \, m \, \text{used to compute } \widehat{Y}$$

Algorithm 1 Differentiable dichotomic search.

lb ← -500€/MWh
ub ← 3000€/MWh
found ← False
while (found = False) and
$$(ub - lb > 2 * 0.01)$$
 do
 $\lambda \leftarrow \frac{ub+lb}{2}$
 $\mathcal{D}_k' \leftarrow \mathcal{D}'(\lambda)$
found ← $\mathcal{D}_k' = 0$
 $ub \leftarrow ub - H(\mathcal{D}_k') * (ub - \lambda)$
 $lb \leftarrow \lambda - H(\mathcal{D}_k') * (\lambda - lb)$
end while

$$\begin{split} \frac{\partial \widehat{Y}}{\partial \widehat{OB}} &= \sum_{m} \nabla_{m} \frac{\partial m}{\partial \widehat{OB}} \, \forall \, m \, \text{used to compute} \, \widehat{Y} \\ &= \sum_{k=1}^{N-1} \nabla_{\mathcal{D}'_{k}} \frac{\partial \mathcal{D}'_{k}}{\partial \widehat{OB}}, \end{split}$$

Algorithm 1 Differentiable dichotomic search.

$$\begin{array}{l} \text{lb} \leftarrow -500 \in /\text{MWh} \\ \text{ub} \leftarrow 3000 \in /\text{MWh} \\ \text{found} \leftarrow \text{False} \\ \text{while (found = False) and } (ub - lb > 2*0.01) \text{ do} \\ \\ \frac{\lambda \leftarrow \frac{ub + lb}{2}}{\mathcal{D}_k' \leftarrow \mathcal{D}'(\lambda)} \\ \text{found} \leftarrow \mathcal{D}_k' = 0 \\ ub \leftarrow ub - H(\mathcal{D}_k') * (ub - \lambda) \\ lb \leftarrow \lambda - H(\mathcal{D}_k') * (\lambda - lb) \\ \text{end while} \\ \end{array} \begin{array}{l} \frac{\partial \widehat{Y}}{\partial OB} = \sum_m \nabla_m \frac{\partial m}{\partial OB} \ \forall \ m \text{ used to compute } \widehat{Y} \\ \\ \frac{\partial \widehat{D}_k'}{\partial OB} \\ \\ \end{array}$$

Solving $\mathcal{D}'(\lambda^*) = 0$ using a Differentiable Dichotomic search

Algorithm 1 Differentiable dichotomic search.

$$\begin{array}{l} \text{lb} \leftarrow -500 \in /\text{MWh} \\ \text{ub} \leftarrow 3000 \in /\text{MWh} \\ \text{found} \leftarrow \text{False} \\ \text{while (found = False) and } (ub - lb > 2 * 0.01) \text{ do} \\ \lambda \leftarrow \frac{ub + lb}{2} \\ \mathcal{D}_k' \leftarrow \mathcal{D}'(\lambda) \\ \text{found} \leftarrow \mathcal{D}_k' = 0 \\ ub \leftarrow ub - H(\mathcal{D}_k') * (ub - \lambda) \\ lb \leftarrow \lambda - H(\mathcal{D}_k') * (\lambda - lb) \end{array} \qquad \begin{array}{l} Accumulate & \frac{\partial \mathcal{D}_k'}{\partial \widehat{OB}} \\ \text{during each step } k \end{array} = \sum_{k=1}^{N-1} \nabla_{\mathcal{D}_k'} \frac{\partial \mathcal{D}_k'}{\partial \widehat{OB}},$$

Solving $\mathcal{D}'(\lambda^*) = 0$ using a Differentiable Dichotomic search

Algorithm 1 Differentiable dichotomic search. lb ← -500€/MWh ub ← 3000€/MWh

found ←False

end while

$$X \longrightarrow \widehat{DNN} \longrightarrow \widehat{OB} \longrightarrow \widehat{Y}$$

$$\underbrace{\partial L(Y,\widehat{Y})}_{\alpha} \underbrace{\partial L(Y,\widehat{Y})}_{\alpha} \underbrace{\partial L(Y,\widehat{Y})}_{\widehat{Y}}$$

Market	Model		
BE			
DE			
FR			
NL			

Market	Model		
	DNN		
BE			
	DAIN		
DE	DNN		
FR	DNN		
	DIVIV		
NL	DNN		

Market	Model		
	DNN		
BE	DO		
DE	DNN		
	DO		
	DNN		
FR	DO		
NL	DNN		
	DO		

Market	Model		
	DNN		
BE	DO		
	DNN + DO		
DE	DNN		
	DO		
	DNN + DO		
	DNN		
FR	DO		
	DNN + DO		
NL	DNN		
	DO		
	DNN + DO		

Market	Model		
	DNN		
BE	DO		
	DNN + DO		
	DNN		
DE	DO		
	DNN + DO		
	DNN		
FR	DO		
	DNN + DO		
NL	DNN		
	DO		
	DNN + DO		

$$L_{DNN+DO} = \frac{1}{2}L_{DNN} + \frac{1}{2}L_{DO} \stackrel{X}{\widehat{Y}_{DNN}}$$

Market	Model		
	DNN		
BE	DO		
	DNN + DO		
	DNN		
DE	DO		
	DNN + DO		
	DNN		
FR	DO		
	DNN + DO		
NL	DNN		
	DO		
	DNN + DO		

$DNN \rightarrow OB$	$\mathcal{D}'(\lambda^*) = 0$ Y_{DO}
VN	
L_{DNN}	L_{DO}

Léonard Tschora

Market	Model	€/MWh	RMAE	%
	DNN	7.74	0.941	21.27
BE	DO	7.27	0.884	19.73
	DNN + DO	6.28	0.763	17.28
	DNN	7.28	0.778	29.83
DE	DO	9.01	0.958	29.87
	DNN + DO	6.99	0.745	25.97
	DNN	4.54	0.653	15.5
FR	DO	6.47	0.93	20.31
	DNN + DO	5.3	0.759	16.2
NL	DNN	6.32	1.057	18.84
	DO	6.53	1.092	16.47
	DNN + DO	5.22	0.874	13.4

<ロ > → → → → → → → → → → → → へ へ ○

	DNN	7.74	0.941	21.27
BE	DO	7.27	0.884	19.73
	DNN + DO	6.28	0.763	17.28
	DNN	7.28	0.778	29.83
DE	DO	9.01	0.958	29.87
	DNN + DO	6.99	0.745	25.97
	DNN	4.54	0.653	15.5
FR	DO	6.47	0.93	20.31
	DNN + DO	5.3	0.759	16.2
NL	DNN	6.32	1.057	18.84
	DO	6.53	1.092	16.47
	DNN + DO	5.22	0.874	13.4

Léonard Tschora

Considering **Domain Knowledge** during training captures the real relationship between Consumption, Generation and Prices.

Considering **Domain Knowledge** during training captures the real relationship between Consumption, Generation and Prices.

<ロト (部) (注) (注)

Discussion

<ロト (部) (注) (注)

Discussion

08h

12/10

08h

16h

-49/₁₀

- 1 Introduction
- 2 Explaining the Forecasts
- 3 Optimize-then-Predict approach
- 4 A differentiable Optimization Approach
- **5** Conclusion

Summary of the Contributions

Linking predictions with **Domain-Knowledge**

Summary of the Contributions

Linking predictions with

Domain-Knowledge

Integrating **Domain-Knowledge** in the input

Summary of the Contributions

Industrial Impact of the thesis

Germany : Islander Project

Industrial Impact of the thesis

Germany: Islander Project

France: Trading on the Day-Ahead Market

Industrial Impact of the thesis

Germany: Islander Project

France: Trading on the Day-Ahead Market

Minimizing the Task Loss using **Differentiable Optimization**

