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Necessity to explain the forecasts!
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How can we forecast the
prices of all markets
simultaneously?

How can we consider the constrained
energy flows while forecasting prices?
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Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

The Price-Fixing Algorithm

Léonard Tschora

9 / 33
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min L(OB , ÔB) 6= min L(Y , Ŷ )

How can we minimize the Price Forecasting Error?
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practices and an open-access benchmark, Applied Energy, 2021

Models:
• Deep Neural Network

• Convolutional Neural Network
• Random Forest
• Support Vector (Chain, Multi)

Features

Test Period Ŷ
(d,h)
naive =

Y (d−7,h) if
d is a week-end

Y (d−1,h)

otherwise
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MAE(Y ,Ŷnaive)
∈ [0, 1] Ŷ
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Y (d−1,h) if d is a week day
Y (d−7,h) otherwise
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Multi-Market 0.45 0.57 0.45 0.45 0.45DE
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Multi-Market 0.68 0.75 0.67 0.67 0.67BE
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(h)
f ,l,h′ is high when h = h′

Importance of Generation Forecasts
and Foreign Prices (Switzerland, the
Netherlands)
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Ŷ (d ,h) =
∑
f ,l ,h′

Φ
(d ,h)
f ,l ,h′

Φ̄
(h)
f ,l ,h′ =

1
nd

∑
d

Φ
(d ,h)
f ,l ,h′

• Vertical lines for end-of-the-day Past
Prices

• Past Features are not important

• Diagonals: Φ̄
(h)
f ,l,h′ is high when h = h′

Importance of Generation Forecasts
and Foreign Prices (Switzerland, the
Netherlands)



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Explaining the DDN’s German price forecasts using Shap Values

Léonard Tschora

13 / 33

S. Lundberg et al. A Unified Approach to Interpreting Model Predictions., NIPS 2017
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Using a SVR or a DNN combined with Shap
Values bridges the gap between forecasts
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Attributes

Y(d−1) Past prices
C Consumption Forecast
G Programmable Generation Forecast
R Renewables Generation Forecast

Fs = arg max
Fz,z′

∑
z,z′

Fz,z′(Y
(d−1)
z′ − Y (d−1)

z )

under const.

{
Gz + Rz − Cz +

∑
z′ Fz′,z −

∑
z′ Fz,z′ = 0 ∀z

Fz,z′ ≤ Γz,z′ ∀z , z ′

Impossible to enforce
using forecasts G, R, C

Using Programmable Generation E as an
optimization variable

Flin

arg max
Fz,z′ , Ez

∑
z,z′

Fz,z′(Pz′ − Pz)


Ez + Rz − Cz +

∑
z′ Fz,z′ −

∑
z′ Fz′,z = 0 ∀z

0 ≤ Fz,z′ ≤ Az,z′ ∀z , z ′

0 ≤ Ez ≤ Vz ∀z

Penalize deviation from the Energy Balance

Flsq

arg min
Fz,z′

∑
z

(
Rz + Gz − Cz +

∑
z′

Fz′,z −
∑
z′

Fz,z′

)2

u.c 0 ≤ Fz,z′ ≤ Az,z′ ∀z,z′
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Flsq otherwise
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Social Welfare(A,OB)

u.c . Energy Balance(A,OB) = 0

SW (i) = AiViP
∗ − 1

2
A2
i ViPi − AiViPoi − θi

EUPHEMIA

max
A

∑
i∈ OB

(
−1
2
A2
i ViPi − AiViPoi

)
u.c.

∑
i∈ OB

AiVi = 0,

− Ai ≤ 0,
Ai − 1 ≤ 0

How can we find Y while solving
EUPHEMIA?
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EUPHEMIA

max
A

∑
i∈ OB

(
−1

2
A2
i ViPi − AiViPoi

)
u.c.

∑
i∈ OB

AiVi = 0,

− Ai ≤ 0,
Ai − 1 ≤ 0

Lagrangian

Dual Problem
λ? = min

λ

∑
i∈ OB

Di (λ)

with Di (λ) =


(1) 0, if Vi (Poi − λ) > 0
(2) Vi (λ− Pi

2 − Poi ), if Vi (λ− Pi − Poi )) > 0
(3) Vi

2Pi
(λ− Poi )

2, if λ ∈ [Poi ,Poi + Pi ]

λ? is the Day-Ahead Price!

D′(λ?) = 0

D′(λ) =
∑
i

xiH(xi )− yiH(yi )

Pi

H(x) =

{
0 if x < 0
1 if x ≥ 0

xi = Vi (λ− Poi )
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∂ÔB
=
∑
m

∇m
∂m

∂ÔB
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2LDNN + 1

2LDO

MAE SMAPE

Market Model

e/MWh
RMAE

%
DNN 7.74 0.941 21.27
DO 7.27 0.884 19.73

BE

DNN + DO 6.28 0.763 17.28
DNN 7.28 0.778 29.83
DO 9.01 0.958 29.87

DE

DNN + DO 6.99 0.745 25.97
DNN 4.54 0.653 15.5
DO 6.47 0.93 20.31

FR

DNN + DO 5.3 0.759 16.2
DNN 6.32 1.057 18.84
DO 6.53 1.092 16.47

NL

DNN + DO 5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Evaluation of the Differentiable Optimization DO approach on the 2019 period

Léonard Tschora

28 / 33

LDNN+DO = 1
2LDNN + 1

2LDO

MAE SMAPE

Market Model

e/MWh
RMAE

%

DNN

7.74 0.941 21.27
DO 7.27 0.884 19.73

BE

DNN + DO 6.28 0.763 17.28

DNN

7.28 0.778 29.83
DO 9.01 0.958 29.87

DE

DNN + DO 6.99 0.745 25.97

DNN

4.54 0.653 15.5
DO 6.47 0.93 20.31

FR

DNN + DO 5.3 0.759 16.2

DNN

6.32 1.057 18.84
DO 6.53 1.092 16.47

NL

DNN + DO 5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Evaluation of the Differentiable Optimization DO approach on the 2019 period

Léonard Tschora

28 / 33

LDNN+DO = 1
2LDNN + 1

2LDO

MAE SMAPE

Market Model

e/MWh
RMAE

%

DNN

7.74 0.941 21.27

DO

7.27 0.884 19.73

BE

DNN + DO 6.28 0.763 17.28

DNN

7.28 0.778 29.83

DO

9.01 0.958 29.87

DE

DNN + DO 6.99 0.745 25.97

DNN

4.54 0.653 15.5

DO

6.47 0.93 20.31

FR

DNN + DO 5.3 0.759 16.2

DNN

6.32 1.057 18.84

DO

6.53 1.092 16.47

NL

DNN + DO 5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Evaluation of the Differentiable Optimization DO approach on the 2019 period

Léonard Tschora

28 / 33

LDNN+DO = 1
2LDNN + 1

2LDO

MAE SMAPE

Market Model

e/MWh
RMAE

%

DNN

7.74 0.941 21.27

DO

7.27 0.884 19.73

BE
DNN + DO

6.28 0.763 17.28

DNN

7.28 0.778 29.83

DO

9.01 0.958 29.87

DE
DNN + DO

6.99 0.745 25.97

DNN

4.54 0.653 15.5

DO

6.47 0.93 20.31

FR
DNN + DO

5.3 0.759 16.2

DNN

6.32 1.057 18.84

DO

6.53 1.092 16.47

NL
DNN + DO

5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Evaluation of the Differentiable Optimization DO approach on the 2019 period

Léonard Tschora

28 / 33

LDNN+DO = 1
2LDNN + 1

2LDO

MAE SMAPE

Market Model

e/MWh
RMAE

%

DNN

7.74 0.941 21.27

DO

7.27 0.884 19.73

BE
DNN + DO

6.28 0.763 17.28

DNN

7.28 0.778 29.83

DO

9.01 0.958 29.87

DE
DNN + DO

6.99 0.745 25.97

DNN

4.54 0.653 15.5

DO

6.47 0.93 20.31

FR
DNN + DO

5.3 0.759 16.2

DNN

6.32 1.057 18.84

DO

6.53 1.092 16.47

NL
DNN + DO

5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Evaluation of the Differentiable Optimization DO approach on the 2019 period

Léonard Tschora

28 / 33

LDNN+DO = 1
2LDNN + 1

2LDO

MAE SMAPE

Market Model

e/MWh
RMAE

%

DNN

7.74 0.941 21.27

DO

7.27 0.884 19.73

BE
DNN + DO

6.28 0.763 17.28

DNN

7.28 0.778 29.83

DO

9.01 0.958 29.87

DE
DNN + DO

6.99 0.745 25.97

DNN

4.54 0.653 15.5

DO

6.47 0.93 20.31

FR
DNN + DO

5.3 0.759 16.2

DNN

6.32 1.057 18.84

DO

6.53 1.092 16.47

NL
DNN + DO

5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Evaluation of the Differentiable Optimization DO approach on the 2019 period

Léonard Tschora

28 / 33

LDNN+DO = 1
2LDNN + 1

2LDO

MAE SMAPEMarket Model
e/MWh

RMAE
%

DNN 7.74 0.941 21.27
DO 7.27 0.884 19.73BE

DNN + DO 6.28 0.763 17.28
DNN 7.28 0.778 29.83
DO 9.01 0.958 29.87DE

DNN + DO 6.99 0.745 25.97
DNN 4.54 0.653 15.5
DO 6.47 0.93 20.31FR

DNN + DO 5.3 0.759 16.2
DNN 6.32 1.057 18.84
DO 6.53 1.092 16.47NL

DNN + DO 5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Evaluation of the Differentiable Optimization DO approach on the 2019 period

Léonard Tschora

28 / 33

LDNN+DO = 1
2LDNN + 1

2LDO

MAE SMAPEMarket Model
e/MWh

RMAE
%

DNN 7.74 0.941 21.27
DO 7.27 0.884 19.73BE

DNN + DO 6.28 0.763 17.28
DNN 7.28 0.778 29.83
DO 9.01 0.958 29.87DE

DNN + DO 6.99 0.745 25.97
DNN 4.54 0.653 15.5
DO 6.47 0.93 20.31FR

DNN + DO 5.3 0.759 16.2
DNN 6.32 1.057 18.84
DO 6.53 1.092 16.47NL

DNN + DO 5.22 0.874 13.4

Energy Mix



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Discussion

Léonard Tschora

29 / 33

Considering Domain Knowledge during
training captures the real relationship
between Consumption, Generation and
Prices.

Electricity Price Forecasting based on
Order Books: a differentiable
optimization approach, DSAA 2023.



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Discussion

Léonard Tschora

29 / 33

Considering Domain Knowledge during
training captures the real relationship
between Consumption, Generation and
Prices.

Electricity Price Forecasting based on
Order Books: a differentiable
optimization approach, DSAA 2023.



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Discussion

Léonard Tschora

29 / 33

Considering Domain Knowledge during
training captures the real relationship
between Consumption, Generation and
Prices.

Electricity Price Forecasting based on
Order Books: a differentiable
optimization approach, DSAA 2023.



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Discussion

Léonard Tschora

29 / 33

Considering Domain Knowledge during
training captures the real relationship
between Consumption, Generation and
Prices.

Electricity Price Forecasting based on
Order Books: a differentiable
optimization approach, DSAA 2023.



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Plan

1 Introduction

2 Explaining the Forecasts

3 Optimize-then-Predict approach

4 A differentiable Optimization Approach

5 Conclusion

Léonard Tschora

30 / 33



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Summary of the Contributions

Léonard Tschora

31 / 33

Linking predictions with
Domain-Knowledge

Integrating Domain-Knowledge
in the input

Considering Domain Knowledge
during training



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Summary of the Contributions

Léonard Tschora

31 / 33

Linking predictions with
Domain-Knowledge

Integrating Domain-Knowledge
in the input

Considering Domain Knowledge
during training



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Summary of the Contributions

Léonard Tschora

31 / 33

Linking predictions with
Domain-Knowledge

Integrating Domain-Knowledge
in the input

Considering Domain Knowledge
during training



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Industrial Impact of the thesis

Léonard Tschora

32 / 33

Germany : Islander Project

France : Trading on the Day-Ahead Market

Minimizing the Task Loss using Differentiable Optimization



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Industrial Impact of the thesis

Léonard Tschora

32 / 33

Germany : Islander Project France : Trading on the Day-Ahead Market

Minimizing the Task Loss using Differentiable Optimization



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Industrial Impact of the thesis

Léonard Tschora

32 / 33

Germany : Islander Project France : Trading on the Day-Ahead Market

Minimizing the Task Loss using Differentiable Optimization



Introduction Explaining the Forecasts Optimize-then-Predict approach A differentiable Optimization Approach Conclusion

Léonard Tschora

33 / 33

Thanks


	Introduction
	The electricity market
	Challenges
	Contributions

	Explaining the Forecasts
	Extending the State-of-the-Art
	Explaining the forecasts

	Optimize-then-Predict approach
	Graph representation
	4 approaches to estimate the flows
	An Optimize-then-Predict Approach
	Results
	Synthesis

	A differentiable Optimization Approach
	A Differentiable Optimization framework for EPF
	Finding the optimal prices from an Order Book
	Results
	Synthesis

	Conclusion

