Electricity Price Forecasting based on Order Books: a differentiable optimization approach

Léonard Tschora, Tias Guns, Erwan Pierre, Marc Plantevit, Céline Robardet

December 11, 2023

Suppose you have 1M€

$$c = 500k \in$$

c=150k€

c = 250*k*€

c = 350*k*€

Suppose you have 1M€

$$\widehat{B} = \max_{B_i \in \{0,1\}} \sum B_i \widehat{r}_i$$

$$\sum B_i c_i \leq 1 M \text{ }$$

c = 250*k*€

c = 350*k*€

Predict r

Predict r

Predict r

Predict r

Minimizing $L(\mathbf{r}, \hat{\mathbf{r}}) = |\mathbf{r} - \hat{\mathbf{r}}|$

Suppose you have 1M€

 $c = 400k \in \hat{\mathbf{r}} = 425k \in \hat{\mathbf{r}}$

 $c = 500k \in \hat{\mathbf{r}} = 575k \in \mathbf{0}$

$$\widehat{B} = \max_{B_i \in \{0,1\}} \sum B_i \widehat{r}_i$$

$$\sum B_i c_i \leq 1 M \in \mathbb{I}$$

 $c = 150k \in$ $\hat{\mathbf{r}} = 225k \in$

 $c = 350k \in$ $\hat{\mathbf{r}} = 400k \in$

Suppose you have 1M€

c = 400*k*€

 $\boldsymbol{\hat{r}=425k}\boldsymbol{\in}$

500k€ $\boldsymbol{\hat{r}}=575\boldsymbol{k}\boldsymbol{\in}$

$$\widehat{B} = \max_{B_i \in \{0,1\}} \sum B_i \widehat{r}_i$$

$$\sum B_i c_i \leq 1 M \in \mathbb{I}$$

350k€ $\hat{r} = 400 \text{k} \in$

Suppose you have 1M€

c = 400*k*€

 $\boldsymbol{\hat{r}=425k}\boldsymbol{\in}$

 $\boldsymbol{\hat{r}}=575\boldsymbol{k}\boldsymbol{\in}$

 $\widehat{B} = \max_{B_i \in \{0,1\}} \sum B_i \widehat{r}_i$

 $\sum B_i c_i \leq 1 M \in$

 $\sum \widehat{B}_i \widehat{r}_i = 1.2 M \in \mathbb{R}$

c = 250*k*€

r̂ = 300k€

 $\hat{r} = 400 \text{k} \in$

Suppose you have 1M€

c = 400*k*€

î = 425*k*€

 $r=475k\!\!\in\!\!$

 $\hat{r} = 500k \in$

r = 575k€

 $c = 150k \in$ $\hat{r} = 225k \in$

 $r=175k\!\!\in\!\!$

0k€ 5k€ '5k€ c = 350k€

r̂ = 400*k*€

 $r=400k\!\!\in\!\!$

 $c = 250k \in$ $\hat{r} = 300k \in$

Suppose you have 1M€

c = 400*k*€

r̂ = 425*k*€

 $\hat{r} = 575k \in$ $\mathbf{r} = 525k \in$

 $c = 150k \in$ $\hat{r} = 225k \in$

 $r=175k\!\!\in\!\!$

 $c = 350k \in$ $\hat{r} = 400k \in$

 $r=400k\!\!\in\!\!$

 $c = 250k \in \hat{r} = 300k \in$

Suppose you have 1M€

= 400k€

r̂ = 425*k*€

r = 475k€

c = 500*k*€

= 225*k*€

r = 175k€

 $r=400k\!\!\in\!\!$

150k€

250k€ $\hat{r} = 300k \in$

r = 325k€

r̂ = 575*k*€

 $r=525k\!\!\in\!\!$

 $c = 350k \in$

 $\hat{r} = 400k \in$

 $\widehat{B} = \max_{B_i \in \{0,1\}} \sum B_i \widehat{r}_i$ $\sum B_i c_i \leq 1 M \in$ $\sum \widehat{B}_i \widehat{r}_i = 1.2 M \in$ $\sum \widehat{B}_i r_i = 1.1 \text{M} \in$ $\sum B_i^{\star} r_i = 1.2 M \in$

Suppose you have 1M€

= 400k€

r̂ = 425*k*€

r = 475k€

 $c = 500k \in$

r̂ = 575*k*€

r = 525k€

150k€ = 225k€.

r = 175k€

250k€ $\hat{r} = 300k \in$

r = 325k€

r̂ = 400*k*€

 $r=400k\!\!\in\!\!$

$$\widehat{B} = \max_{B_i \in \{0,1\}} \sum B_i \widehat{r}_i$$

$$\sum B_i \widehat{c}_i \leq 1 \text{ M} \in \mathbb{R}$$

$$\sum \widehat{B}_i \widehat{r}_i = 1.2 M \in$$

$$\sum \widehat{B}_i r_i = 1.1 M \in$$

$$\sum B_i^{\star} r_i = 1.2 M \in$$

 $c = 350k \in REGRET(B^*, \widehat{B}) = \sum B_i^* r_i - \sum \widehat{B}_i r_i$ = 0.1M€.

How do I know that minimizing $L(r, \hat{r}) = |r - \hat{r}|$ will lower the *REGRET*?

Differentiable Optimization

The market uses ${\rm EUPHEMIA}$, a Quadratic optimization Problem to set the prices.

The market uses ${\rm EUPHEMIA}$, a Quadratic optimization Problem to set the prices.

$$\max_{A \in [0,1]} \sum \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right)$$
u.c.
$$\sum A_i V_i = 0$$

The market uses ${\rm EUPHEMIA}$, a Quadratic optimization Problem to set the prices.

$$\max_{A \in [0,1]} \sum \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right)$$
u.c.
$$\sum A_i V_i = 0$$

EUPHEMIA in a price forecasting model

EUPHEMIA in a price forecasting model

EUPHEMIA in a price forecasting model

$$\max_{A \in [0,1]} \sum \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right)$$
u.c.
$$\sum A_i V_i = 0$$

EUPHEMIA in a price forecasting model

$$\begin{array}{c} X \\ \hline \\ \hline \\ \frac{\partial |Y-\widehat{Y}|}{\partial X} = \frac{\partial |Y-\widehat{Y}|}{\partial \widehat{Y}} & \begin{array}{c} \frac{\partial \widehat{Y}}{\partial \widehat{OB}} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{OB}}{\partial X} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{OB}}{\partial X} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{OB}}{\partial X} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{OB}}{\partial X} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{OB}}{\partial X} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{OB}}{\partial X} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial B} \end{array} & \begin{array}{c} \frac{\partial \widehat{V}}{\partial B} \\ \hline \\ \frac{\partial \widehat{V}}{\partial$$

EUPHEMIA in a price forecasting model

$$\begin{array}{c|c} X & \longrightarrow & \widehat{OB} & \longrightarrow & \text{EUPHEMIA} \\ \hline & \frac{\partial |Y-\widehat{Y}|}{\partial X} = \frac{\partial |Y-\widehat{Y}|}{\partial \widehat{Y}} & \frac{\partial \widehat{Y}}{\partial \widehat{OB}} & \frac{\partial \widehat{OB}}{\partial X} \\ \\ \max_{A \in [0,1]} \sum \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right) & \leftrightarrow \widehat{Y} = \min_{\lambda \in \mathbb{R}} \mathcal{D} \left(\lambda, \widehat{OB} \right) \\ \text{u.c.} & \sum A_i V_i = 0 & \leftrightarrow \mathcal{D}' \left(\lambda, \widehat{OB} \right) = 0 \end{array}$$

EUPHEMIA in a price forecasting model

$$\begin{array}{c|c}
X & \longrightarrow & \widehat{OB} & \longrightarrow & \widehat{EUPHEMIA} & \longrightarrow |Y - \widehat{Y}| \\
\hline
\frac{\partial |Y - \widehat{Y}|}{\partial X} & = \frac{\partial |Y - \widehat{Y}|}{\partial \widehat{Y}} & \stackrel{\widehat{OB}}{\partial \widehat{OB}} & \frac{\partial \widehat{OB}}{\partial X} \\
\\
\max_{A \in [0,1]} \sum \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right) & \leftrightarrow \widehat{Y} = \min_{\lambda \in \mathbb{R}} \mathcal{D} \left(\lambda, \widehat{OB} \right) \\
\text{u.c.} & \sum A_i V_i = 0 & \leftrightarrow \mathcal{D}' \left(\lambda, \widehat{OB} \right) = 0
\end{array}$$

We solve $\mathcal{D}'\left(\lambda,\widehat{OB}\right)=0$ using a dichotomy search whose gradients can be tracked.

What is the impact of Differentiable Optimization on the forecasts quality?

Consumption, Generation & Renewables Forecasts + Past Prices

Consumption, Generation & Renewables Forecasts + Past Prices

UK Current Prices available at 11.15am

Country	Model		
BE			
DE			
FR			
NL			

Country	Model		
	DNN		
BE			
DE	DNN		
	DNN		
FR			
NL	DNN		

Country	Model		
	DNN		
BE	DO		
DE	DNN		
	DO		
	DNN		
FR	DO		
NL	DNN		
	DO		

Country	Model		
	DNN		
BE	DO		
	DNN + DO		
DE	DNN		
	DO		
	DNN + DO		
	DNN		
FR	DO		
	DNN + DO		
NL	DNN		
	DO		
	DNN + DO		

Country	Model	MAE €/MWh	
	DNN	7.74	
BE	DO	7.27	
	DNN + DO	6.28	
DE	DNN	7.28	
	DO	9.01	
	DNN + DO	6.99	
	DNN	4.54	
FR	DO	6.47	
	DNN + DO	5.3	
NL	DNN	6.32	
	DO	6.53	
	DNN + DO	5.22	

Country	Model	MAE €/MWh	RMAE	
	DNN	7.74	0.941	
BE	DO	7.27	0.884	
	DNN + DO	6.28	0.763	
DE	DNN	7.28	0.778	
	DO	9.01	0.958	
	DNN + DO	6.99	0.745	
FR	DNN	4.54	0.653	
	DO	6.47	0.93	
	DNN + DO	5.3	0.759	
NL	DNN	6.32	1.057	
	DO	6.53	1.092	
	DNN + DO	5.22	0.874	

Country	Model	MAE €/MWh	RMAE	SMAPE %
	DNN	7.74	0.941	21.27
BE	DO	7.27	0.884	19.73
	DNN + DO	6.28	0.763	17.28
	DNN	7.28	0.778	29.83
DE	DO	9.01	0.958	29.87
	DNN + DO	6.99	0.745	25.97
	DNN	4.54	0.653	15.5
FR	DO	6.47	0.93	20.31
	DNN + DO	5.3	0.759	16.2
NL	DNN	6.32	1.057	18.84
	DO	6.53	1.092	16.47
	DNN + DO	5.22	0.874	13.4

Country	Model	MAE €/MWh	RMAE	SMAPE %
	DNN	7.74	0.941	21.27
BE	DO	7.27	0.884	19.73
	DNN + DO	6.28	0.763	17.28
	DNN	7.28	0.778	29.83
DE	DO	9.01	0.958	29.87
	DNN + DO	6.99	0.745	25.97
	DNN	4.54	0.653	15.5
FR	DO	6.47	0.93	20.31
	DNN + DO	5.3	0.759	16.2
NL	DNN	6.32	1.057	18.84
	DO	6.53	1.092	16.47
	DNN + DO	5.22	0.874	13.4

 Differentiable Optimization is a way to integrate
 Optimization problems in a DNN model

- Differentiable Optimization is a way to integrate
 Optimization problems in a DNN model
- Because Electricity Prices are the results of a QP, we can apply DO to forecast them

- Differentiable Optimization is a way to integrate
 Optimization problems in a DNN model
- Because Electricity Prices are the results of a QP, we can apply DO to forecast them
- The true relationship between Consumption, Generation and Prices lies in the Order Books

 Differentiable Optimization is a way to integrate
 Optimization problems in a DNN model

 Because Electricity Prices are the results of a QP, we can apply DO to forecast them

 The true relationship between Consumption, Generation and Prices lies in the Order Books

Thanks for listening!

leonard.tschora@bcmenergy.fr

Bonus - Formulating the Dual Problem

$$\max_{A \in [0,1]} \sum \left(-\frac{1}{2} A_i^2 V_i P_i - A_i V_i P_{o_i} \right)$$
u.c.
$$\sum A_i V_i = 0$$

$$\mathcal{L}(A,\lambda,M,K) = \sum -\frac{A_i^2 V_i P_i}{2} - A_i V_i Po_i + \lambda A_i V_i - M_i A_i + K_i (Ai - 1)$$

$$\min_{\lambda} \mathcal{D}(\lambda) = \min_{\lambda} \sum \mathcal{D}_{i}(\lambda) \text{ with } \mathcal{D}_{i}(\lambda)$$

$$= \begin{cases}
(1) 0, & \text{if } V_{i}(Po_{i} - \lambda) > 0 \\
(2) V_{i}(\lambda - \frac{P_{i}}{2} - Po_{i}), & \text{if } V_{i}(\lambda - P_{i} - Po_{i})) > 0 \\
(3) \frac{V_{i}}{2P_{i}}(\lambda - Po_{i})^{2}, & \text{if } \lambda \in [Po_{i}, Po_{i} + P_{i}]
\end{cases}$$

Bonus - The Dichotomy Search

Differentiable dichotomy search. H is the Heaviside function.

```
Ib ← -500€/MWh

ub ← 3000€/MWh

found ←False

while (found = False) and (ub − lb > 2 * 0.01) do

M \leftarrow \frac{ub+lb}{2}

D_M \leftarrow D'(M)

found ← D_M = 0

ub \leftarrow ub - H(D_M) * (ub - M)

lb \leftarrow M - H(D_M) * (M - lb)

end while
```

Bonus - The DNN + DO model

